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We employ numerical methods to study the equations of  diffusion mass transfer in a two-phase zone, 
these equations derived from the general principles of  nonequilibrium thermodynamics. We examine 
the case of a quasiequilibrium diffusion process in which the concentration, in grossly approximate 
terms, is a function exclusively of  the single space variable and of  time. The solutions of  these equations 
proved to be unstable with respect to disruptions of  the diffusions paths at the conoids. 

INTRODUCTION 

One of the basic differences between the diffusion mass transfer in triple and multicomponent systems from the 
case of binary systems is the possibility of forming two-phase zones in the diffusion process. The most familiar example 
of this kind of process is the internal oxidation of alloys [1, 2]. At the same time, the study of the mutual diffusion in 
two-phase zones has so far been limited to special particular cases, with the exception of [3], where an attempt was made 
to formulate the problem in more general form. In this communication we propose equations which describe the 
quasiequilibrium process of mutual diffusion (derived on the basis of general statements from nonequilibrium 
thermodynamics), and we will present the nontrivial results from a numerical solution of these equations. 

We will subsequently utilize the hypothesis of local quasiequilibrium in the diffusion process, when the equalization 
of the chemopotentials/~i for all three components in this "physically small volume," (both between grains of various phases 
and within the grains themselves) proceed more rapidly than the change in these chemopotentials due to divergence of 
macroflows (in this case, the "physically small volume" includes at least several grains from each of the phases). According 
to the Gibbs phase rule, in a triple two=phase system, given fixed T and p, there remains yet another thermodynamic 
degree of freedom which must change along the diffusion path which passes through the two-phase region. Local equilibrium 
for the phases a and/~ (see Fig. I) is determined from the following three equations: 

[x~ (c~, c~)-~ Ix/~(cl, c2~), i =  I, 2, 3, (1) 

a - C  a 1 where Cl a, c2a, cx#, and c~ # are the boundary concentrations of the phases (c 3 = 1 - cx a 2 , csa = - cla - c2a). 
Conditions (1), imposed on these four quantities, leave only one of these four quantities independent. More precisely, 

all four boundary concentrations are defined by the single parameter k ("the conoid parameter"): cl(k), c2~(k), cl(k), 
c2#(k). On satisfaction of the condition of local quasiequilibrium the chemopotentials of the components (equal in both 
phases to the average concentrations c 1, c2) are defined by only the single conoid parameter k which passes through 
the corresponding triangle concentration point: 

= c?  + 
= + = (k), (2)  

p# = 1 - Pa (Pa and p~ are the specific fractions of the a and fl phases). 
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Fig. 1. Calculation of the diffusion paths in the case of  strong divergence between k L 
and kR: a) at the start of  the calculation; b) with the following number of grid steps over 
time t = 52, At = 0.1; c) diffusion path (stratified) reaches a single conoid at various points. 

The chemopotentials of all regions whose concentrations lie on a single conoid are identical. The states of these 
regions are distinguished only by the fractions of the p,~ phases. Therefore, all regions with concentrations on a single 
conoid are in equilibrium relative to each other and there is no diffusion between them. 

According to the general phenomenological equations of nonequilibrium thermodynamics, in a laboratory reckoning 
system (I 1 + I~. + I s = 0) the independent flows of components I and 2 (3 is the solvent) are given by the following expressions 
[4, 5]: 

2 
]m - -  X L r n  n a (bl, n -  P~:3) (Lmn . Onsager c o e f f i c i e n t s ) ,  r/Z = 1,2.  

n=I ax  

If we take into consideration that #i depends only on k, we obtain an analogy of  the first Fick law: 

Ok 
I1  ~-  - -  A/~l a--x ' 

I~ = - -  A42 Ok 
ax ' 

where 

(3) 

~ / 1  = E l l  a (~i, I - -  ~1,3) @_LI 2 a (ILI,2 - -  ~3) . 
Ok ate ' 

~_ = i~ ,  a ( ~  - -  ~) ~- L ~  a ( ~  - ~) 
Ok Ok 

Let us make use of  the continuity conditions 

o71 
8t 

at 

Olx 0 ( Ok 
ox =0-7 

012 O - Ok 
Ox -- ox ( M2-fx ) " 

(4) 

(5) 

When we take into consideration relationship (2) we o b t a i n  a system of two equations for the two functions k(t ,  x) and 
pa(t ,  x) (in analogy to the second Fick law): 

x - -  = ( ~  - c~)  - ( 4 '  - d )  

:{ (- 04 o4 ( 4 - 4 )  ( .  o4 tl = (6) 

= [ P" o -k  + P " - ~ } - f ~ t  ' Ox ) P ' - - J k -  ~ 3-~ " 

We can predict certain of the unique features encountered in the solutions of Eqs.  (5) o r  (6) from general 
thermodynamic considerations. 
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If in the diffusion in a single-phase alloy, in the initial stage exhibiting two regions with volumes V L and V R 
and independent concentrations (cx L, c~ L) and (cl R, c~R), it is possible uniquely and independent of  the specific form 
of the equations to predict that in the final state a homogeneous alloy of composition F will be formed: 

Ci(F) = (Vz ci L -}- VR c~)/(Vz + V~ ), i = 1,2, (7) 

and that in the case of  two-phase alloys the situation becomes one that is no longer uniquely defined. 
Let the points e L and c R be situated in a two-phase region of the concentration triangle. In the final state the 

concentration'~(F) m (~x, ~2) averaged over the entire volume is uniquely defined by Eqs. (7), but in this case the system, 
in the final state, must no longer be homogeneous. For example, it may consist of two regions 1 and 2, in equilibrium 
with each other, and whose concentrations lie on a single conoid with the point of average composition, while the volumetric 
fractions are associated by the relationships 

n ~ 2  

p(F) : ( 2  V~p(i)) /(VL + V R ) .  (8) 

Stratification in the final stage is a priori permissible in an arbitrary number of regions on a single conoid, provided 
that the normalization conditions (8) for arbitrary n are observed. 

All of these final stages are in equilibrium and correspond to identical concentrations, averaged over the entire 
volume, and to that extent they are equally valid. It is in this lack of unique definition that we find the basic difference 
from a single-phase region. Naturally, it might be expected that this lack of unique definition for the final equilibrium 
state might make itself apparent in the features of the solutions for the equations of diffusion in the two-phase region, 
said equations describing relaxation of the system to equilibrium. 

An analytical study of the equations of diffusion in a two-phase zone, i.e., Eqs. (5) and (6), for the time being 
is impossible in the general case. In order to ascertain the qualitative features of the process, we obtained numerical solutions 
for differential equations (5) and (6), replacing them by finite-difference equations and varying the magnitudes of the 
diffusion parameters. In order to describe the effective transfer parameters with respect to a locally nonuniform system 
we employ a variety of approaches (see, for example, [6, 7]). However, in numerous cases, if the diffusion permeability 
of the phases ~ and /~ exhibits no marked differences, the "model of parallel combination" serves as a rather good 
approximation [7]. Within the framework of this model we can assume 

(9) 

where Mi a and Mi# are specified by the boundary conditions of conjugacy with pure phases. As was demonstrated in 
[8], the quantities Mi a and Mi# are associated with the diffusion coefficients of the phase a and ~ by the following 
relationships: 

clc?'~ ~ , ,~  clc~'~ (10) M? '~=  D~i ~ .4- ul2 ~ , 

dc~' ~ Oct" ~ 
M~'~ : D~i~ ~ q- D ~  Ok (11) 

We will vary the quantities Dii a and Dii #- 
The shape of the two-ph~e region'in the concentration triangle and the position of the conoids are of no fundamental 

significance in our effort to ascertain the qualitative features of the solutions. The boundaries of the phases a and ~ in 
the concentration triangle are therefore specified as straight lines parallel to the sides 1-2: cl a + c2 a = e a, c1# + e2~ = 
1 - e# > e~. 

We assume that all of the conoids converge as they are extended at apex 3 of the concentration triangle, so that 
for the points on the phase boundaries in equilibrium with each other (lying on a single conoid) the following equations 
are satisfied: 

c~ /e~ = c~/(1 - -  %), c~ /e~ : c~/(1 - -  e~). 

For the conoid parameter k we choose cx#, so that 
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1 - -  e~  

c~(k)=  (1 k ) e~, c 2 ( k ) = l - - e ~ - - k .  

To calculate the diffusion paths, we apply the finite-difference method to the profiles cl(x ) and cg.(x). The finite- 
difference scheme has the form 

At (A~/~ (] + 1) (k (j -1- 1) - -  k (])) - -  ~/~ (j - -  1) (k (]) - -  (12) ci  (j)  = c~ (])  + - ~ -  

- -  ~ ( i  - -  1))),  i = 1 ,2 .  

In this case the initial conditions are specified by a discontinuous function. Under these conditions, the grid 
approximations, failing to account for the unique nature of the changes in the solutions, may result in considerable error. 
Therefore, in the place of the separation point we have introduced a narrow transition zone which is comprised of several 
grid intervals [9]. This boundary-layer correction factor was sought in the steady analog of system (5): 

V (~41vk) = 0 IM1 vk = const, 
:=>- 

V (~2 Vk) = 0 [,Q2 Vk = const. 
Thus, in our case the boundary-layer correction factor is reduced to functions connecting the points to the left 

and to the right of the discontinuity. 
Numerical calculations of the diffusion paths and the concentration profiles were undertaken for various forms 

of the diffusion-coefficient matrices in the a- and fl-phases. Here all of the parameters were reduced to dimensionless 
form. The following represents characteristic examples of parameter selection: 

D~t = 3; D~2 = - - 2 , 4 ;  D~ = 1,6; D~2 = 2; ec, = 0,3; 

D~, =0 ,5 ;  D~z = 0,4; D~I = - - 1 , 2 ;  D2~2= 1,5; e~ =0,2.5; 

:~ = %.I0-Z; cl = e=-l,6; c~ = (1--e~).0,6; cf = ( 1 - - @ . 1 0  -z. 

As a result of these calculations we determined that the solution of the given system of equations depends significantly 
on the setting of the initial conditions and depends only little on the grid spacing, which suggests that the finite-difference 
scheme has been properly chosen. Moreover, it turned out that the nature of the behavior of these solutions is identical 
for all of the tested sets of diffusion parameters and differs only in the speed with which the process takes place. Thus, 
if k L and k R (see Fig. 1) of the original diffusion pair differs markedly, the solution initially exhibits a smooth nature, 
but over time both the functions Cl(X) and c2(x) and, correspondingly, the diffusion path in the concentration triangle, 
become discontinuous. A second important case is observed if  the initial conditions are specified by k L and k R close 
to each other, but with substantially different phase fractions (see Fig. 2). The diffusion path will then immediately reach 
a single conoid at various points. Let us note once again that the possibility of stratification in the final stage is independent 
of the specific form of the equations. 

A A 

\ 5 

B B 

Fig. 2. Calculation of the diffusion path for k L and k R close in value, but with essentially 
different  phase fractions: a) at the start of the calculation; b) the diffusion path reaching 
a single conoid at various points. 
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y: 
Let us describe the presence of discontinuities p, using the equations of flow balance in discontinuity coordinates 

Ac 1 d_Y_V = All, Ace d___y_y = AI2. 
dt dt (13) 

Using (2), we obtain 

and 

- c b  ,,,ey = = - a ( o k  

dt \ Ox ] ' 

(c~ - -  c2 ~) A p~ d__ff_y = AI~ ----- - -  A flT/~ ~ . 
dt 

Let us examine the case Ivl 1, Ivlg. = const (undergoing no discontinuity in the case of discontinuity p). In this case, 
for comparability of Eqs. (l 4) and (15) it is essential that dy/dt  ffi 0 (and correspondingly that Aak/ax = 0), since otherwise, 
having divided (14) by (15), we obtain the equation (cl a - c1#)/(c2 a - c2 ~) = M1/M 2, "entry" into which is extremely unlikely. 
Thus, in the given case the discontinuity p is possible, while the derivative ak/ax undergoes no discontinuity. If  M 1 and 
M2.are independent of p [for example, in the model of parallel combination (9)], the following flows are noncontinuous: 
&(M.ak/ax) = 0, and the derivative ak/ax by itself is discontinuous. 

1 
The number of such discontinuities in the diffusion path (and in the concentration profiles) is entirely arbitrary. 

Also acceptable is a situation in which the function p(t, x), discontinuous at each point, serves as a formal solution of 
system of equations (6), and the function k(t, x) is discontinuous, but has a derivative ak/ax that is discontinuous at each 

point. 
This result ("stochastization" of the diffusion paths in the concentration space) is unusual and calls for some 

interpretation. We noted earlier that this is associated with the nonunique definition of the final equilibrium state of 
the two-phase alloy. We offer  yet another curious analogy: in formal terms it is possible to describe the mutual diffusion 
in the two-phase zone of a triple system by an ordinary system of Fick equations with a 2 x 2 matrix of diffusion coefficients 
Dij (i, j = 1, 2). However, in this case the coefficients Dij are not independent (this is reflected by the fact that in the 
two-phase region we have only a single thermodynamic degree of freedom for fixed values of T and p) [8]. Here det Dij 
= 0, i.e., the matrix is degenerate. Let us note that the property of det dij = 0 (or D = 0 for a binary alloy) is characteristic 
for the disintegration point of the alloy, which, as is well known, is also characterized by the "stochastization" of the system 

and the nonunique definition of the final state. 

CONCLUSION 

The solution for the equation of diffusion mass transfer in the two-phase zone of a triple system proved it to be 
unstable with respect to discontinuities in the diffusion paths at the conoids. In this case, the solution of the given system 
of equations depends substantially on the specification of the initial conditions. In principle, this property of instability 
may lead to nonreproducibility in the concentration profiles of the two-phase region under repeating initial conditions. 

NOTATION 

#i a,#, chemopotentials of the components; ci a,#, boundary concentrations of phases a and 13; ~i ,  average concentration 
in the two-phase zone; k, "the parameter" of the conoid; p~.#, specific fractions of phases a and fl; Ii, component flows; 
Lmn, Onsager coefficients; M i, phenomenological coefficients of mutual diffusion in the two-phase zone; Mi a,0, values 
of these coefficients at the boundaries of the two-phase zone; VL, R, volumes of the initial regions of the diffusion pair; 
ci L,R, concentrations of components in these regions; V i, volumes of the regions in the final state; F, composition of 
homogeneous alloy in final state; DB.C a,0, coefficient of diffusion in a and 13 phases; At and h, intervals of the grid 
approximation over time and the coordinate x; y, coordinate of the interphase boundary. 

1048 



. 

2. 

3. 

4. 

5. 
6. 

7. 

8. 

9. 

LITERATURE CITED 

K. Hauffe, Reactions in Solids and on Their Surfaces [Russian translation], Moscow (1963), Chap. 2. 
M. G. Isakov, Diffusion Processes in Metals [in Russian], Tula (1978), pp. 31-35. 
K. P. Gurov, B. A. Kartashkin, and A. N. Chadov, Diffusion Processes in Metals [in Russian], Tula (1980), pp. 

3-10. 
B. S. Bokshtein, S. Z. Bokshtein, and A. A. Zhukhovitskii, The Thermodynamics and Kinetics of  Diffusion in Solids 
[in Russian], Moscow (1971). 
Encyclopedia of Physics [in Russian], Vol. 1, Moscow (1988), pp. 686-688. 
G. N. Durnev and Yu. P. Zarichnyak, Thermal Conductivity of  Mixtures and Composition Materials [in Russian], 
Leningrad (1974). 
A. M. Gusak, A. P. Mokrov, V. V. Zhigunov, and L. F. Ostrovskii, Fiz.-Khim. Mekh. Mater., 63, No. 6, 1070- 

1077 (1987). 
A. M. Gusak and Yu. A. Lyashenko, "The problem of two-phase zones in the description of mutual diffusion," 
Dep. in VINITI, Kiev, No. 992-B89. 
V. M. Paskunov, V. I. Polezhaev, and L. A. Chudov, Numerical Simulation of the Processes of  Heat and Mass 
Transfer [in Russian], Moscow (1984). 

A COMPUTER MATHEMATICAL MODEL OF A PERCOLATION GRID 

V. V. Novikov and S. V. Ishchenko UDC 539.32 

We propose a mathematical model of  two- and three-dimensional percolation grids, on the basis of 
which we determine certain critical indices and the fractal dimensionality of an infinite cluster. 

INTRODUCTION 

Recently, in the description of the structure of various micrononuniform systems and their properties intensive 
use has been made of various percolation models [1-3]. In most of the cases, percolation models are produced by means 
of finite grids whose dimensions are limited by the memory volume of the computer. Results obtained in such grids must 
be extrapolated to grids of infinite size and serve as the basis from which to ascertain the qualitative behavior in the properties 
of percolation systems. In the following we describe a mathematical model which exhibits a fractal asymptote and which 
allows us to calculate the precise values of the critical indices and properties of percolation systems. 

In these grid models we distinguish between linkage and node problems. In the linkage (node) problem we study 
the properties of the grid on a change in the concentration of whole linkages (nodes) v from 1-0. 

The critical concentration v c at which an infinite cluster (IC) arises is referred to as the penetration threshold and 
for the linkage problem this is denoted as ve,s(d), while for the node problem this is denoted at Vc,b(d), where the superscript 
indicates the dimensionality of the grid. 

The critical behavior of the quantities characterizing the percolation grid is described in the following form [1]: 
the relative number of nodes belonging to the IC: 

P (v) ~-, (v --  vc)~, v > v~, (1) 

the average number of nodes in the finite cluster 
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